Category Theory

Mathematical Logic
Category Theory
Author

Rong-Kang Zhang

Published

October 30, 2025

Keywords

Natural Transformation

1 Category theory

See (Lane 1998)

1.1 Introduction

1.1.1 Natural transformation

Definition (Index set \(\left(A_i\right)_{i \in I}\) ) \(A: I \rightarrow X, i \mapsto A_i\) Definition (Product over the index set \(\left(A_i\right)_{i \in I}\) ) \[ \prod_{i \in I} A_i:=\left\{a: I \rightarrow \bigcup_{i \in I} A_i \mid \forall i \in I, a(i) \in A_i\right\} \]

Definition (Semigroup \((S, *)\) )

\[ *: S \times S \rightarrow S \]

  • Axiom 1 (Closure)

\[ \forall a, b \in S, a * b \in S \]

  • Axiom 2 (Associativity)

\[ \forall a, b, c \in S,(a * b) * c=a *(b * c) \]

Example (Semigroup)

\[ (\mathbb{N},+), \mathbb{N}=\{1,2,3, \ldots\}, 0 \notin \mathbb{N} \]

Definition (Commutative semigroup)

\[ \forall a, b \in S, a * b=b * a \]

Definition (Non-commutative semigroup)

\[ \left\{\begin{array}{l} \forall a, b, c \in S,(a * b) * c=a *(b * c) \\ \exists x, y \in S, x * y \neq y * x \end{array}\right. \] 查看是否更新

References

Lane, S. M. (1998), Categories for the working mathematician, Graduate texts in mathematics, New York, NY: Springer-Verlag. https://doi.org/10.1007/978-1-4757-4721-8.