Category Theory

Expository Study Notes on Category Theory

Mathematical Logic
Category Theory
Author

Rong-Kang Zhang

Published

November 25, 2025

Abstract

These notes follow a textbook-style roadmap through category theory, moving from concrete definitions to abstract machinery and onward to cross-domain applications. I open with the core anatomy of a category: objects, hom-sets, associative composition and identity arrows; emphasis is placed on locally-small categories and the dual-category trick that instantly doubles one’s supply of examples. Functors enter next as structure-preserving translations between categories, preparing the ground for natural transformations—“maps of functors” whose commutative-diagram discipline is illustrated with explicit calculations. The Yoneda Lemma is then derived step-by-step, showing how every fobject lives vicariously through its representable functor and why “proof by probing” becomes a legitimate strategy. With this embedding tool in hand I explore limits and colimits (products, equalizers, pull-/push-outs) and spell out their universal properties diagram-by-diagram; adjoint functors appear soon after as “optimal solution providers”, exemplified by free groups and the Stone–Čech compactification. A final chapter bridges to computer science: algebraic data types as algebras for endofunctors, concurrent processes as coalgebras, and how monadic composition captures side effects—culminating in the Beck-style monadicity theorem. Throughout, definitions, theorems and exercises alternate with motivational remarks, mirroring the rhythm of a lecture course and keeping the abstract landscape navigable.

Keywords

Natural Transformation, Functor, Adjoint Functor, Limits

1 Category Theory

1.1 Code Examples

1.1.1 Haskell Implementation

-- CategoryDemo.hs: Haskell中的函子实例示例
import Data.Functor (Functor(..))

-- 自定义数据类型模拟"树"结构
data Tree a = Leaf a | Node (Tree a) (Tree a) deriving (Show)

-- 为Tree实现Functor实例(函子)
instance Functor Tree where
    -- fmap: (a→b) → Tree a → Tree b(态射映射)
    fmap f (Leaf x) = Leaf (f x)
    fmap f (Node l r) = Node (fmap f l) (fmap f r)

-- 测试:函子保持态射复合
main :: IO ()
main = do
    let tree = Node (Leaf 1) (Node (Leaf 2) (Leaf 3))
        f = (+1)    -- 态射f: Int→Int
        g = (*2)    -- 态射g: Int→Int
    -- 验证 fmap (g . f) = fmap g . fmap f(函子性质)
    print $ fmap (g . f) tree  -- Node (Leaf 4) (Node (Leaf 6) (Leaf 8))
    print $ (fmap g . fmap f) tree  -- 与上一行结果相同

1.1.2 Python Implementation

# demo.py: 范畴学基础概念的Python模拟实现
from typing import Generic, TypeVar, Callable, List

# 类型变量用于模拟范畴中的对象类型
A = TypeVar('A')
B = TypeVar('B')
C = TypeVar('C')


class Morphism(Generic[A, B]):
    """模拟范畴中的态射(morphism)"""
    def __init__(self, dom: A, codom: B, func: Callable[[A], B]):
        self.dom = dom  # 定义域对象
        self.codom = codom  # 陪域对象
        self.func = func  # 态射对应的函数实现

    def __call__(self, x: A) -> B:
        return self.func(x)

    def __matmul__(self, other: 'Morphism[C, A]') -> 'Morphism[C, B]':
        """用 @ 运算符模拟态射复合 (g @ f 表示 g ∘ f)"""
        if other.codom != self.dom:
            raise ValueError("态射复合定义域不匹配")
        return Morphism(other.dom, self.codom, lambda x: self.func(other.func(x)))


class Category(Generic[A]):
    """模拟一个范畴(category)"""
    def __init__(self, objects: List[A], morphisms: List[Morphism]):
        self.objects = objects
        self.morphisms = morphisms

    def identity(self, obj: A) -> Morphism[A, A]:
        """获取对象上的单位态射"""
        return Morphism(obj, obj, lambda x: x)


class Functor(Generic[A, B]):
    """模拟函子(functor):从范畴C到范畴D的映射"""
    def __init__(self, 
                 source: Category[A], 
                 target: Category[B],
                 map_obj: Callable[[A], B],
                 map_morph: Callable[[Morphism[A, A]], Morphism[B, B]]):
        self.source = source  # 源范畴
        self.target = target  # 目标范畴
        self.map_obj = map_obj  # 对象映射
        self.map_morph = map_morph  # 态射映射

    def __call__(self, obj: A) -> B:
        """函子作用于对象"""
        return self.map_obj(obj)

    def apply_morph(self, morph: Morphism[A, A]) -> Morphism[B, B]:
        """函子作用于态射"""
        return self.map_morph(morph)


# 示例:集合范畴(Set)的模拟
if __name__ == "__main__":
    # 1. 定义集合范畴中的对象(集合)
    set_objects = [int, str, list]  # 以Python类型模拟集合对象

    # 2. 定义态射(函数)
    # 态射f: int → str(整数转字符串)
    f = Morphism(int, str, lambda x: str(x))
    # 态射g: str → list(字符串转字符列表)
    g = Morphism(str, list, lambda s: list(s))
    # 复合态射g ∘ f: int → list
    h = g @ f

    # 3. 构建集合范畴
    set_category = Category(set_objects, [f, g, h])

    # 4. 定义列表函子(List Functor):Set → Set
    # 对象映射:将集合A映射到列表集合List[A]
    def list_map_obj(a: type) -> type:
        return List[a]  # 用Python的List类型模拟

    # 态射映射:将函数f: A→B映射到f*: List[A]→List[B](逐元素应用f)
    def list_map_morph(morph: Morphism[A, B]) -> Morphism[List[A], List[B]]:
        return Morphism(
            List[morph.dom], 
            List[morph.codom],
            lambda lst: [morph(x) for x in lst]
        )

    # 实例化列表函子
    list_functor = Functor(
        source=set_category,
        target=set_category,
        map_obj=list_map_obj,
        map_morph=list_map_morph
    )

    # 测试:函子作用于对象
    print("列表函子作用于int对象:", list_functor(int))  # 输出 List[int]

    # 测试:函子作用于态射f(int→str)
    mapped_f = list_functor.apply_morph(f)
    test_list = [1, 2, 3]
    print("函子作用于态射后的结果:", mapped_f(test_list))  # 输出 ['1', '2', '3']

1.2 Foundational Definitions & Theorems

1.2.1 Theorem: Hom-Functor Preserves Limits

Theorem 1 For any locally small category \(\mathcal{C}\) and any object \(A \in \mathcal{C}\), the functor \(\mathcal{C}(A, -)\) preserves limits.

See Thm. Theorem 1 (Lane 1998).

1.2.2 Lemma: Full & Faithful Functors Reflect Isomorphisms

Lemma 1 Every full and faithful functor reflects isomorphisms.

See Lem. Lemma 1 .

1.2.3 Definition: Adjunction

Definition 1 An adjunction consists of a pair of functors \(L \colon \mathcal{C} \rightleftarrows \mathcal{D} \colon R\) together with a natural isomorphism \(\mathcal{D}(LA, B) \cong \mathcal{C}(A, RB)\).

1.2.4 Corollary: Completeness of Functor Categories

Corollary 1 Any functor category \([\mathcal{C}^{\mathrm{op}}, \mathbf{Set}]\) is complete.

See Cor. Corollary 1 .

1.2.5 Proposition: Left Adjoints Preserve Colimits

Left adjoints preserve colimits.

See Prop. (prop-reflect?) (Lane 1998).

1.3 Examples & Remarks

1.3.1 Example: Yoneda Embedding for Sets

The functor \(\mathbf{Set}(1, -)\) is naturally isomorphic to the identity.

See Ex. (ex-yoneda?) .

1.3.2 Remark: Non-Surjectivity of Yoneda Embedding

Remark 1. The Yoneda embedding is not surjective on objects in general.

See Rem. Remark 1.

1.4 Figures

Picture 1: Illustration of category theory concept. See Fig. (fig:picture1?).

1.5 Introduction

1.5.1 Natural transformation

Let \(f \in L^1(X\times Y)\). Then \[ \int_X\!\int_Y f(x,y)\,dy\,dx = \int_Y\!\int_X f(x,y)\,dx\,dy. \]

Definition 2 A group is a set \(G\) with a binary operation \(\cdot\) satisfying: 1. Associativity: \((a\cdot b)\cdot c=a\cdot(b\cdot c)\); 2. Identity: \(\exists e\in G\) such that \(e\cdot a=a\cdot e=a\); 3. Inverses: \(\forall a\in G\ \exists a^{-1}\in G\) such that \(a\cdot a^{-1}=a^{-1}\cdot a=e\).

The set \(\mathbb Z\) with addition is a group.

Lemma 2 The product of two integers is even if at least one factor is even.

Theorem 2 There are infinitely many prime numbers.

Proof. Assume finitely many primes \(p_1,\dots,p_n\).
Consider \(P=p_1\cdots p_n+1\).
\(P>1\) has a prime divisor \(p\), but \(p\) divides neither \(P-1\) nor \(1\), contradiction.

Corollary 2 For every integer \(n\ge 2\) there exists a prime \(p>n\).

Remark 2. Euclid’s proof is constructive: it gives an upper bound on the next prime.

Definition (Index set \(\left(A_i\right)_{i \in I}\) ) \(A: I \rightarrow X, i \mapsto A_i\) Definition (Product over the index set \(\left(A_i\right)_{i \in I}\) ) \[ \prod_{i \in I} A_i:=\left\{a: I \rightarrow \bigcup_{i \in I} A_i \mid \forall i \in I, a(i) \in A_i\right\} \]

Definition (Semigroup \((S, *)\) )

\[ *: S \times S \rightarrow S \]

  • Axiom 1 (Closure)

\[ \forall a, b \in S, a * b \in S \]

  • Axiom 2 (Associativity)

\[ \forall a, b, c \in S,(a * b) * c=a *(b * c) \]

Example (Semigroup)

\[ (\mathbb{N},+), \mathbb{N}=\{1,2,3, \ldots\}, 0 \notin \mathbb{N} \]

Definition (Commutative semigroup)

\[ \forall a, b \in S, a * b=b * a \]

Definition (Non-commutative semigroup)

\[ \left\{\begin{array}{l} \forall a, b, c \in S,(a * b) * c=a *(b * c) \\ \exists x, y \in S, x * y \neq y * x \end{array}\right. \] 查看是否更新

表情 图标
smile

grin

sad

1.6 物理推导

真空中的麦克斯韦方程组(微分形式) [ \[\begin{aligned} \nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0}, \\ \nabla \cdot \mathbf{B} &= 0, \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t}, \\ \nabla \times \mathbf{B} &= \mu_0\mathbf{J} + \mu_0\varepsilon_0\frac{\partial \mathbf{E}}{\partial t}. \end{aligned}\]

]

这里放入你希望先保存到盒子再复用的内容,例如一张 TikZ 图或复杂表格。

导出 PDF 时,上方两段会被分别包裹为

而在 HTML 里它们只是带对应 class 的 <div>,方便你自行加 CSS。

2 Category Theory

2.1 1. Foundational Definitions of Categories

Definition 3 A category \(\mathcal{C}\) consists of the following data: 1. A class \(\text{ob}(\mathcal{C})\) whose elements are called objects; 2. For every pair of objects \(A, B \in \text{ob}(\mathcal{C})\), a set \(\text{hom}_{\mathcal{C}}(A, B)\) (called morphisms from \(A\) to \(B\)); 3. For every triple of objects \(A, B, C \in \text{ob}(\mathcal{C})\), a composition function: \[\text{hom}_{\mathcal{C}}(A, B) \times \text{hom}_{\mathcal{C}}(B, C) \to \text{hom}_{\mathcal{C}}(A, C), \quad (f, g) \mapsto g \circ f\] satisfying three axioms: - (Disjointness) Morphism sets are disjoint (each morphism uniquely determines its domain and codomain); - (Associativity) For all \(f \in \text{hom}(A,B)\), \(g \in \text{hom}(B,C)\), \(h \in \text{hom}(C,D)\), \((h \circ g) \circ f = h \circ (g \circ f)\); - (Identity) For every object \(A\), there exists a unique identity morphism \(\text{id}_A \in \text{hom}(A,A)\) such that \(f \circ \text{id}_A = f\) (for all \(f \in \text{hom}(A,B)\)) and \(\text{id}_A \circ g = g\) (for all \(g \in \text{hom}(C,A)\)).

See Def. Definition 3. For context on “locally small categories” (where \(\text{hom}_{\mathcal{C}}(A,B)\) is a set for all \(A,B\)) and “small categories” (where \(\text{ob}(\mathcal{C})\) is a set), refer to (algant2019?).

2.2 2. Dual Categories and Isomorphisms

Definition 4 The dual category \(\mathcal{C}^{\text{op}}\) of a category \(\mathcal{C}\) has: - The same objects as \(\mathcal{C}\) (i.e., \(\text{ob}(\mathcal{C}^{\text{op}}) = \text{ob}(\mathcal{C})\)); - Morphisms \(\text{hom}_{\mathcal{C}^{\text{op}}}(A, B) = \text{hom}_{\mathcal{C}}(B, A)\) (all morphisms are reversed); - Composition \(\circ_{\text{op}}\) defined by \(f \circ_{\text{op}} g = g \circ f\) (where \(\circ\) is composition in \(\mathcal{C}\)).

See Def. Definition 4. This construction embodies the duality principle: any theorem about \(\mathcal{C}\) translates to a theorem about \(\mathcal{C}^{\text{op}}\) by reversing morphisms (e.g., “products in \(\mathcal{C}\)” become “coproducts in \(\mathcal{C}^{\text{op}}\)”).

Definition 5 A morphism \(f \in \text{hom}_{\mathcal{C}}(A, B)\) is an isomorphism if there exists a morphism \(g \in \text{hom}_{\mathcal{C}}(B, A)\) (called its inverse) such that \(g \circ f = \text{id}_A\) and \(f \circ g = \text{id}_B\). If such an \(f\) exists, \(A\) and \(B\) are isomorphic (written \(A \cong B\)).

See Def. Definition 5. The inverse of an isomorphism is unique (Exercise: Prove this using identity morphism properties (algant2019?)).

2.3 3. Natural Transformations (Morphisms of Functors)

Definition 6 Let \(F, G: \mathcal{C} \to \mathcal{D}\) be two functors between categories \(\mathcal{C}\) and \(\mathcal{D}\). A natural transformation \(\eta: F \Rightarrow G\) consists of: 1. For every object \(X \in \text{ob}(\mathcal{C})\), a component morphism \(\eta_X \in \text{hom}_{\mathcal{D}}(F(X), G(X))\); 2. A commutativity condition: For every morphism \(f \in \text{hom}_{\mathcal{C}}(X, Y)\) in \(\mathcal{C}\), the diagram \[\begin{CD} F(X) @>{\eta_X}>> G(X) \\ @V{F(f)}VV @VV{G(f)}V \\ F(Y) @>{\eta_Y}>> G(Y) \end{CD}\] commutes (i.e., \(\eta_Y \circ F(f) = G(f) \circ \eta_X\)).

See Def. Definition 6. Examples include the double dual transformation for vector spaces (associating each vector space \(V\) to its double dual \(V^{**}\)) and the Hurewicz homomorphism in algebraic topology (naturaltrans2025?).

2.4 4. Adjoint Functors and Universal Properties

Definition 7 An adjunction between categories \(\mathcal{C}\) and \(\mathcal{D}\) consists of: 1. A pair of functors \(F: \mathcal{D} \to \mathcal{C}\) (left adjoint) and \(G: \mathcal{C} \to \mathcal{D}\) (right adjoint); 2. For all \(C \in \text{ob}(\mathcal{C})\) and \(D \in \text{ob}(\mathcal{D})\), a natural bijection \[\text{hom}_{\mathcal{C}}(F(D), C) \cong \text{hom}_{\mathcal{D}}(D, G(C)).\] Naturality means the bijection is consistent across all objects \(C\) (via functors \(\mathcal{C}(F(-), C)\) and \(\mathcal{D}(-, G(C))\)) and \(D\) (via functors \(\mathcal{C}(F(D), -)\) and \(\mathcal{D}(D, G(-))\)). We write \(F \dashv G\).

See Def. Definition 7. Adjunctions generalize “weak equivalences” between categories and arise from universal constructions: - Algebra: The free group functor \(F: \text{Set} \to \text{Grp}\) (associating a set to its free group) is left adjoint to the forgetful functor \(G: \text{Grp} \to \text{Set}\) (adjoint2025?); - Topology: The Stone–Čech compactification functor is left adjoint to the inclusion functor of compact Hausdorff spaces into topological spaces (adjoint2025?).

2.5 5. Computer Science Applications

Category theory provides a foundational framework for computer science, as highlighted in (tcd2014?): - Algebraic Data Types: Many data types (e.g., lists, trees) are algebras for endofunctors (functors from a category to itself); - Computational Processes: Dynamical systems and concurrent processes are modeled as coalgebras for endofunctors; - Foundational Structures: Cartesian closed categories (with exponential objects) correspond to typed λ-calculi, the basis of functional programming.

The list data type (over a set \(X\)) is an algebra for the endofunctor \(F(Y) = 1 + X \times Y\) (where \(1\) is the terminal object). The algebra structure maps \(\text{inl}(\star)\) to the empty list and \(\text{inr}(x, y)\) to the list \(x :: y\) (cons operation).

See Ex. (ex-list-algebra?).

2.5.1 Definition (n-category)

An n-category is an algebraic structure that generalizes ordinary categories (1-categories). In an n-category: - There are objects (0-morphisms). - For any two objects (a, b), there is an ((n-1))-category ((a, b)) whose objects are called 1-morphisms from (a) to (b). - This structure continues recursively up to k-morphisms for (0 k n). - For (k < n), all k-morphisms commute strictly; while composition of the highest-dimensional n-morphisms only requires weak commutativity, typically characterized by coherence isomorphisms.

When (n = ), we obtain an ∞-category.

2.5.2 Theorem (Equivalent characterizations of ∞-categories)

An ∞-category () can be equivalently characterized by one of the following structures:

  1. As a quasi-category: A simplicial set satisfying the inner Kan condition. This is the primary model adopted by B. Lurie in his book Higher Topos Theory.
  2. As a complete Segal space: A simplicial object of spaces satisfying the Segal condition and completeness condition.
  3. As a Segal category: A weakened simplicial category where Segal maps are equivalences.

These models are Quillen equivalent, thus all describing the same notion of “∞-category”.

2.5.3 Lemma (n-category structure of functor categories)

Let () and () be n-categories. Then all n-functors from () to () and their n-natural transformations form a new n-category, denoted (^) or ((, )), called the functor n-category or exponential n-category.

This lemma ensures that the “mapping space” between n-categories is itself an n-category, forming the basis for constructions like adjunctions in higher category theory.

2.5.4 Proposition (n-groupoids and homotopy n-types)

An n-groupoid is an n-category where all morphisms (in all dimensions) are equivalences.

In homotopy theory, there is a deep connection between n-groupoids and homotopy n-types. Specifically, the homotopy n-type of a topological space is completely determined by its fundamental n-groupoid. This is the content of the Homotopy Hypothesis, which asserts: “The category of n-groupoids is equivalent to the category of homotopy n-types.”

2.5.5 Corollary (1-categories as special cases of ∞-categories)

Directly from the theorem “Equivalent characterizations of ∞-categories”, we deduce:

Any ordinary 1-category () can be regarded as a special case of an ∞-category.

Proof sketch: Treat objects of () as 0-morphisms, 1-morphisms as 1-morphisms, and in all dimensions above 1, include only identity morphisms (or equivalently, no non-trivial morphisms). The resulting quasi-category is a discrete ∞-category that fully encodes the information of the original 1-category.

Remark (Remark (On the importance of “weak” structures)). A core distinction between higher category theory and ordinary category theory lies in the treatment of “commutativity”. In 1-categories, we talk about commutative diagrams, requiring equalities like (f g = h) to hold strictly.

However, in higher-dimensional settings, strict commutativity is too restrictive—there are almost no interesting examples. Thus, the essence of higher category theory is to replace it with weak commutativity. This means we no longer require (f g) and (h) to be strictly equal, but instead allow a higher-dimensional morphism (e.g., a 2-morphism (: f g h)), which itself is an equivalence.

This “weakening” idea is the soul of the subject, allowing us to use categorical language to describe flexible mathematical objects like space homotopies and algebraic deformations.

2.5.6 Example (Geometric instance of an ∞-groupoid)

A crucial example of an ∞-groupoid comes from topology:

Let (X) be a topological space.

We can construct an ∞-groupoid (_(X)), called the fundamental ∞-groupoid of (X), as follows: - 0-morphisms (objects): Points (x X). - 1-morphisms: Paths (: x y) connecting points (x) and (y) in (X). - 2-morphisms: Homotopies (H: ) between paths. - 3-morphisms: Homotopies between homotopies, and so on…

In this ∞-groupoid, all morphisms are homotopy equivalences, perfectly capturing all homotopy information of the space (X). When (X) is a single point, (_(X)) is the trivial ∞-category containing only identity morphisms.

Proof (Proof (Proposition: Homotopy interpretation of n-groupoids)). We sketch the proof of the proposition “n-groupoids and homotopy n-types”.

(Sketch) Let () be an n-groupoid. We need to construct a topological space (B) (called the classifying space or geometric realization of ()) such that its homotopy n-type corresponds to ().

  1. Construction:
    • Start with the objects of (), treating each object as a point.
    • For each 1-morphism (f: a b), attach an interval ([0,1]) with endpoints connected to (a) and (b).
    • For each 2-morphism (: f g), attach a square ([0,1] ), gluing its boundary according to the source and target of ().
    • Continue recursively, attaching a k-dimensional cube for each k-morphism and gluing according to its source and target.
  2. Verification:
    • The fundamental groupoid (_1(B)) of the space (B) constructed this way is the 1-truncation of () (i.e., ignoring all morphisms above dimension 1).
    • Higher homotopy groups (_k(B, x)) are given by equivalence classes of k-morphisms in () based at (x).
    • Since () is an n-groupoid, all homotopy groups above dimension (n) are trivial, so (B) is a homotopy n-type.

Conversely, the fundamental n-groupoid of any homotopy n-type is an n-groupoid. This establishes the equivalence between the two. ()

图标 图标名称 对应网站/用途 Quarto 使用代码

academia Academia.edu

academia-square Academia.edu (方形)

acclaim Acclaim

acclaim-square Acclaim (方形)

acm ACM Digital Library

acm-square ACM Digital Library (方形)

acmdl ACM Digital Library

acmdl-square ACM Digital Library (方形)

ads NASA ADS

ads-square NASA ADS (方形)

africarxiv AfricArXiv

africarxiv-square AfricArXiv (方形)

altmetric Altmetric

altmetric-square Altmetric (方形)

aminer AMiner

aminer-square AMiner (方形)

annualreviews Annual Reviews

annualreviews-square Annual Reviews (方形)

archive Archive.org

archive-square Archive.org (方形)

arxiv arXiv

arxiv-square arXiv (方形)

arxivclassic arXiv Classic

arxivclassic-square arXiv Classic (方形)

authorea Authorea

authorea-square Authorea (方形)

biorxiv bioRxiv

biorxiv-square bioRxiv (方形)

book Book

book-square Book (方形)

bookchapter Book Chapter

bookchapter-square Book Chapter (方形)

blog Blog

blog-square Blog (方形)

cameraready Camera Ready

cameraready-square Camera Ready (方形)

ceur CEUR Workshop Proceedings

ceur-square CEUR Workshop Proceedings (方形)

ciencia-vitae Ciencia Vitae

ciencia-vitae-square Ciencia Vitae (方形)

chemrxiv ChemRxiv

chemrxiv-square ChemRxiv (方形)

clarivate Clarivate Analytics

clarivate-square Clarivate Analytics (方形)

closed-access Closed Access

closed-access-square Closed Access (方形)

cnki CNKI

cnki-square CNKI (方形)

conference Conference

conference-square Conference (方形)

conversation Conversation

conversation-square Conversation (方形)

coursera Coursera

coursera-square Coursera (方形)

crossref CrossRef

crossref-square CrossRef (方形)

cv CV

cv-square CV (方形)

data Data

data-square Data (方形)

datacite DataCite

datacite-square DataCite (方形)

dataset Dataset

dataset-square Dataset (方形)

dataverse Dataverse

dataverse-square Dataverse (方形)

dblp DBLP

dblp-square DBLP (方形)

degrees Degrees

degrees-square Degrees (方形)

depsy Depsy

depsy-square Depsy (方形)

doi DOI

doi-square DOI (方形)

dryad Dryad

dryad-square Dryad (方形)

elsevier Elsevier

elsevier-square Elsevier (方形)

fig Figure

fig-square Figure (方形)

figshare Figshare

figshare-square Figshare (方形)

font-awesome Font Awesome

font-awesome-alt Font Awesome Alt

frontiersin Frontiers in

frontiersin-square Frontiers in (方形)

funding Funding

funding-square Funding (方形)

genarxiv GenArXiv

genarxiv-square GenArXiv (方形)

geochron GeoChron

geochron-square GeoChron (方形)

github GitHub

github-alt GitHub Alt

github-square GitHub Square

google Google

google-scholar Google Scholar

google-scholar-square Google Scholar (方形)

hal HAL

hal-square HAL (方形)

hypothesis Hypothesis

hypothesis-square Hypothesis (方形)

ideas-repec IDEAS/RePEc

ideas-repec-square IDEAS/RePEc (方形)

ieee IEEE Xplore

ieee-square IEEE Xplore (方形)

impactstory ImpactStory

impactstory-square ImpactStory (方形)

inaturalist iNaturalist

inaturalist-square iNaturalist (方形)

inpn INPN

inpn-square INPN (方形)

inspire INSPIRE

inspire-square INSPIRE (方形)

isidore Isidore

isidore-square Isidore (方形)

jstage J-STAGE

jstage-square J-STAGE (方形)

jstor JSTOR

jstor-square JSTOR (方形)

lattes Lattes

lattes-square Lattes (方形)

license License

license-square License (方形)

linkedin LinkedIn

linkedin-square LinkedIn Square

manuscript Manuscript

manuscript-square Manuscript (方形)

mathoverflow MathOverflow

mathoverflow-square MathOverflow (方形)

medrxiv medRxiv

medrxiv-square medRxiv (方形)

mendeley Mendeley

mendeley-square Mendeley (方形)

microsoft Microsoft

moodle Moodle

moodle-square Moodle (方形)

mtmt MTMT

mtmt-square MTMT (方形)

nature Nature

nature-square Nature (方形)

nakala Nakala

nakala-square Nakala (方形)

npg Nature Publishing Group

npg-square Nature Publishing Group (方形)

obp Open Book Publishers

obp-square Open Book Publishers (方形)

open-access Open Access

open-access-square Open Access (方形)

open-data Open Data

open-data-square Open Data (方形)

open-materials Open Materials

open-materials-square Open Materials (方形)

openedition OpenEdition

openedition-square OpenEdition (方形)

orcid ORCID

orcid-square ORCID (方形)

osf OSF

osf-square OSF (方形)

overleaf Overleaf

overleaf-square Overleaf (方形)

paho PAHO

paho-square PAHO (方形)

peerj PeerJ

peerj-square PeerJ (方形)

philpapers PhilPapers

philpapers-square PhilPapers (方形)

piazza Piazza

piazza-square Piazza (方形)

plos PLOS

plos-square PLOS (方形)

poster Poster

poster-square Poster (方形)

preprint Preprint

preprint-square Preprint (方形)

preregistered Preregistered

preregistered-square Preregistered (方形)

proceedings Proceedings

proceedings-square Proceedings (方形)

protocols Protocols

protocols-square Protocols (方形)

psyarxiv PsyArXiv

psyarxiv-square PsyArXiv (方形)

publons Publons

publons-square Publons (方形)

pubmed PubMed

pubmed-square PubMed (方形)

pubmedcentral PubMed Central

pubmedcentral-square PubMed Central (方形)

pubpeer PubPeer

pubpeer-square PubPeer (方形)

pub Publication

pub-square Publication (方形)

pnas PNAS

pnas-square PNAS (方形)

researcherid ResearcherID

researcherid-square ResearcherID (方形)

researchgate ResearchGate

researchgate-square ResearchGate (方形)

ror ROR

ror-square ROR (方形)

rsc Royal Society of Chemistry

rsc-square Royal Society of Chemistry (方形)

sagepub SAGE Publications

sagepub-square SAGE Publications (方形)

sci-hub Sci-Hub

sci-hub-square Sci-Hub (方形)

scirate SciRate

scirate-square SciRate (方形)

scopus Scopus

scopus-square Scopus (方形)

science Science

science-square Science (方形)

sciencedirect ScienceDirect

sciencedirect-square ScienceDirect (方形)

semantic-scholar Semantic Scholar

semantic-scholar-square Semantic Scholar (方形)

slides Slides

slides-square Slides (方形)

springer Springer

springer-square Springer (方形)

springeropen SpringerOpen

springeropen-square SpringerOpen (方形)

stackoverflow Stack Overflow

stackoverflow-square Stack Overflow (方形)

ssrn SSRN

ssrn-square SSRN (方形)

tandfonline Taylor & Francis Online

tandfonline-square Taylor & Francis Online (方形)

taylorfrancis Taylor & Francis

taylorfrancis-square Taylor & Francis (方形)

theses Theses

theses-square Theses (方形)

thesis Thesis

thesis-square Thesis (方形)

video Video

video-square Video (方形)

wiley Wiley

wiley-square Wiley (方形)

webofscience Web of Science

webofscience-square Web of Science (方形)

zenodo Zenodo

zenodo-square Zenodo (方形)

zotero Zotero

zotero-square Zotero (方形)

3 Default icons

图标预览 图标名称 对应网站/用途 使用代码

address-book 地址簿

address-card 地址卡

adjust 调整

air-freshener 空气清新剂

airplane 飞机

alarm 闹钟

align-center 居中对齐

align-justify 两端对齐

align-left 左对齐

align-right 右对齐

all-inclusive 全包

anchor

angle-double-down 双向下箭头

angle-double-left 双向左箭头

angle-double-right 双向右箭头

angle-double-up 双向上箭头

angle-down 向下箭头

angle-left 向左箭头

angle-right 向右箭头

angle-up 向上箭头

angry 生气

apple-alt 苹果(简化)

archive 归档

arrow-alt-circle-down 圆形向下箭头

arrow-alt-circle-left 圆形向左箭头

arrow-alt-circle-right 圆形向右箭头

arrow-alt-circle-up 圆形向上箭头

arrow-circle-down 圆形向下箭头(实心)

arrow-circle-left 圆形向左箭头(实心)

arrow-circle-right 圆形向右箭头(实心)

arrow-circle-up 圆形向上箭头(实心)

arrow-down 向下箭头(实心)

arrow-left 向左箭头(实心)

arrow-right 向右箭头(实心)

arrow-up 向上箭头(实心)

arrows 双向箭头

arrows-alt 双向箭头(扩展)

arrows-h 水平双向箭头

arrows-v 垂直双向箭头

artstation ArtStation(艺术平台)

assistive-listening-systems 助听系统

asterisk 星号

at (符号?)

audio-description 音频描述

autumn 秋天

award 奖项

baby 婴儿

baby-carriage 婴儿车

backspace 退格键

backpack 背包

balance-scale 天平

ball-pool 球池

ban 禁止

band-aid 创可贴

barcode 条形码

bars 菜单( bars)

baseball-ball 棒球

basketball-ball 篮球

bath 浴缸

battery-empty 电池(空)

battery-full 电池(满)

battery-half 电池(半满)

battery-quarter 电池(四分之一)

battery-three-quarters 电池(四分之三)

bed

beer 啤酒

bell 铃铛

bell-slash 铃铛(静音)

bicycle 自行车

binoculars 双筒望远镜

biohazard 生物危害

bird

birthday-cake 生日蛋糕

bluetooth 蓝牙

boat

bone 骨头

book

book-open 打开的书

bookmark 书签

border-all 全部边框

border-none 无边框

bowling-ball 保龄球

box 盒子

box-open 打开的盒子

braille 盲文

briefcase 公文包

broadcast-tower 广播塔

brush 刷子

bug 虫子

building 建筑

building-columns 建筑(带柱子)

bullhorn 扩音器

bullseye 靶心

bus 公交车

cab 出租车

calculator 计算器

calendar 日历

calendar-alt 日历(简化)

calendar-check 日历(带勾选)

calendar-day 日历(按天)

calendar-minus 日历(减号)

calendar-plus 日历(加号)

calendar-week 日历(按周)

camera 相机

camera-retro 复古相机

campground 露营地

candle 蜡烛

candy-cane 拐杖糖

canister

caps-lock 大小写锁定

car 汽车

car-alt 汽车(简化)

car-battery 汽车电池

caret-down 插入符号(下)

caret-left 插入符号(左)

caret-right 插入符号(右)

caret-up 插入符号(上)

cart-arrow-down 购物车(向下箭头)

cart-plus 购物车(加号)

cat

certificate 证书

chair 椅子

chalkboard 黑板

cheese 奶酪

chess 国际象棋

chess-bishop 国际象棋(主教)

chess-board 国际象棋棋盘

chess-king 国际象棋(国王)

chess-knight 国际象棋(骑士)

chess-pawn 国际象棋(兵)

chess-queen 国际象棋(皇后)

chess-rook 国际象棋(车)

child 小孩

circle 圆形

circle-check 圆形(勾选)

circle-notch 圆形(缺口)

circle-o 圆形(空心)

circle-of-fifths 五度圈

circle-play 圆形(播放)

circle-plus 圆形(加号)

circle-question 圆形(问号)

circle-xmark 圆形(叉号)

clipboard 剪贴板

clipboard-check 剪贴板(勾选)

clipboard-list 剪贴板(列表)

clock 时钟

clone 克隆

closed-captioning 隐藏字幕

cloud

cloud-download-alt 云下载

cloud-upload-alt 云上传

code 代码

code-branch 代码分支

coffee 咖啡

cog 齿轮

cogs 齿轮组

coins 硬币

column

comment 评论

comment-alt 评论(简化)

comment-dots 评论(点)

comments 评论组

compass 指南针

compress 压缩

computer 电脑

concrete 混凝土

cone 圆锥体

connectdevelop ConnectDevelop

cookie 饼干

copy 复制

copyright 版权

couch 沙发

cow

credit-card 信用卡

crop 裁剪

cross 十字架

crosshairs 十字准星

crown 皇冠

cube 立方体

cubes 立方体组

cut 剪切

cutlery 餐具

dashboard 仪表盘

database 数据库

deaf 聋人

desktop 桌面

dev 开发

diamond 钻石

dice 骰子

dice-d20 骰子(D20)

dice-d6 骰子(D6)

direction 方向

disabled 禁用

docker Docker

dog

dollar-sign 美元符号

dot-circle 点圆形

download 下载

draggable 可拖拽

dragon

draw-polygon 绘制多边形

dribbble Dribbble(设计平台)

drum

drumstick-bite 鸡腿

dropbox Dropbox(云存储)

drown 溺水

dvd DVD

edit 编辑

eject 弹出

egg 鸡蛋

electricity

elevator 电梯

ellipsis-h 水平省略号

ellipsis-v 垂直省略号

envelope 信封

envelope-open 打开的信封

envelope-square 方形信封

equalizer 均衡器

eraser 橡皮擦

euro-sign 欧元符号

exchange-alt 交换

exclamation 感叹号

exclamation-circle 圆形感叹号

exclamation-triangle 三角形感叹号

expand 展开

external-link 外部链接

external-link-alt 外部链接(简化)

eye 眼睛

eye-slash 眼睛(斜杠)

face-grin-stars 笑脸(星星眼)

face-laugh-beam 笑脸(大笑)

face-meh 笑脸(平淡)

face-smile 笑脸(微笑)

facebook Facebook(社交平台)

facebook-f Facebook(简化)

facebook-messenger Facebook Messenger(聊天工具)

factory 工厂

fan 风扇

fast-backward 快退

fast-forward 快进

fax 传真

feather 羽毛

feed 饲料

female 女性

ferry 渡轮

file 文件

file-alt 文件(简化)

file-archive 归档文件

file-audio 音频文件

file-code 代码文件

file-excel Excel文件

file-image 图片文件

file-pdf PDF文件

file-powerpoint PowerPoint文件

file-signature 签名文件

file-text 文本文件

file-video 视频文件

file-word Word文件

fill-drip 填充(滴)

film 电影

filter 过滤器

fire

fire-alt 火(简化)

fire-extinguisher 灭火器

first-aid 急救

fish

flag 旗帜

flag-checkered 格子旗

flag-usa 美国国旗

flask 烧瓶

flight 飞行

flipboard Flipboard(新闻应用)

float-left 左浮动

float-right 右浮动

floor-lamp 落地灯

flower

folder 文件夹

folder-open 打开的文件夹

font 字体

football-ball 足球

forklift 叉车

form 表单

forumbee Forumbee(论坛平台)

forward 前进

frown 皱眉

frown-open 皱眉(开口)

fuel-pump 加油站

gamepad 游戏手柄

gavel 法槌

gem 宝石

genderless 无性别

get-pocket Pocket(稍后阅读工具)

gift 礼物

glass-cheers 干杯

glass-water 水杯

globe 地球

globe-americas 地球(美洲)

globe-asia 地球(亚洲)

globe-europe 地球(欧洲)

goat 山羊

gopuram 寺庙塔楼

graduation-cap 毕业帽

grave 坟墓

guitar 吉他

hammer 锤子

hand-holding-heart 手捧心

hand-holding-usd 手持美元

handshake 握手

handshake-alt 握手(简化)

hard-hat 安全帽

hash #符号

headphones 耳机

heart

heart-broken 破碎的心

heat

helicopter 直升机

highlighter 荧光笔

hill-rockslide 山崩

history 历史

home

hospital 医院

hospital-user 医院用户

hot-tub 热水浴缸

hourglass 沙漏

hourglass-end 沙漏(结束)

hourglass-half 沙漏(一半)

hourglass-start 沙漏(开始)

house-chimney 房子(烟囱)

house-chimney-user 房子(烟囱用户)

house-user 房子(用户)

html5 HTML5

hubspot HubSpot(营销平台)

ice-cream 冰淇淋

id-card 身份证

id-card-alt 身份证(简化)

image 图片

images 图片组

inbox 收件箱

indent 缩进

industry 工业

infinity 无限

info 信息

info-circle 圆形信息

instagram Instagram(社交平台)

internet-explorer Internet Explorer(浏览器)

italic 斜体

itunes iTunes

itunes-note iTunes(音符)

jaguar 捷豹

jawbone Jawbone(智能硬件品牌)

jeddah 吉达

jenkins Jenkins(自动化工具)

jersey 运动衫

joomla Joomla(CMS平台)

journal-whills 期刊

jupyter Jupyter(数据分析工具)

key 钥匙

keyboard 键盘

kickstarter Kickstarter(众筹平台)

kickstarter-k Kickstarter(简化)

ladder 梯子

laptop 笔记本电脑

laptop-code 笔记本电脑(代码)

laptop-house 笔记本电脑(家)

laptop-medical 笔记本电脑(医疗)

lastfm Last.fm(音乐平台)

lastfm-square Last.fm(方形)

laugh

layer-group 图层组

leaf 叶子

leanpub Leanpub(电子书平台)

left-right 左右

lemon 柠檬

less-than 小于号

level-down-alt 向下水平

level-up-alt 向上水平

life-ring 救生圈

lightbulb 灯泡

link 链接

link-slash 链接(斜杠)

linux Linux

list 列表

list-alt 列表(简化)

list-check 列表(勾选)

list-ol 有序列表

list-ul 无序列表

location-arrow 定位箭头

lock

lock-open 打开的锁

log 日志

login 登录

logout 登出

long-arrow-alt-down 长向下箭头

long-arrow-alt-left 长向左箭头

long-arrow-alt-right 长向右箭头

long-arrow-alt-up 长向上箭头

low-vision 低视力

magnet 磁铁

mail-bulk 批量邮件

mailchimp Mailchimp(邮件营销平台)

male 男性

map 地图

map-location-dot 地图(定位点)

map-marked-alt 地图(标记)

map-marker-alt 地图标记

map-pin 地图钉

map-signs 地图(标志)

mars 火星

mars-and-venus 火星和金星

mars-double 双火星

mask 面具

maxcdn MaxCDN

meanpath Meanpath

medium Medium(博客平台)

medkit 医疗箱

meetup Meetup(线下活动平台)

meh 平淡

meh-blank 平淡(空白)

memory 内存

menu 菜单

mercury 水星

meter-high 高度计

meter-low 低高度计

meter-square 平方计

microchip 微芯片

microphone 麦克风

microphone-lines 麦克风(线)

microphone-slash 麦克风(斜杠)

microsoft Microsoft

minimize 最小化

minus 减号

minus-circle 圆形减号

minus-square 方形减号

mobile 手机

mobile-alt 手机(简化)

mobile-screen 手机屏幕

mobile-screen-button 手机屏幕(按钮)

modulo

moon 月亮

moon-stars 月亮星星

mortar-pestle 研钵和杵

motorcycle 摩托车

mountain

mountain-city 山城市

mouse 鼠标

mug-hot 热 mug

music 音乐

nasa NASA

navicon 导航图标

neuter 中性

new

newspaper 报纸

node 节点

node-js Node.js

noise 噪音

not-equal 不等于

notebook 笔记本

notebook-alt 笔记本(简化)

notebook-medical 医疗笔记本

nuclear 核能

object-group 对象组

object-ungroup 对象取消组

odnoklassniki Odnoklassniki(社交平台)

odnoklassniki-square Odnoklassniki(方形)

oil-can 油罐

old-republic 旧共和国

olympics 奥运会

om 欧姆

opencart OpenCart(电商平台)

openid OpenID

opera Opera(浏览器)

option 选项

outdent 减少缩进

page-break 分页符

paint-brush 画笔

paint-roller 油漆滚筒

palette 调色板

paper-plane 纸飞机

paper-plane-alt 纸飞机(简化)

paragraph 段落

park 公园

pause 暂停

pause-circle 圆形暂停

pencil 铅笔

pencil-alt 铅笔(简化)

pencil-ruler 铅笔尺子

people-arrows 人们箭头

people-carry 人们携带

percent 百分比

perfect-square 完美平方

phone 电话

phone-alt 电话(简化)

phone-laptop 电话笔记本电脑

phone-slash 电话(斜杠)

photo-film 照片胶片

picture-o 图片(空心)

piggy-bank 存钱罐

plane-departure 飞机起飞

plane-arrival 飞机到达

play 播放

play-circle 圆形播放

playstation PlayStation

plus 加号

plus-circle 圆形加号

plus-square 方形加号

podcast 播客

poo 便便

poo-storm 便便风暴

power-off 电源关闭

print 打印

prison 监狱

problem 问题

project-diagram 项目图表

pulse 脉冲

qrcode 二维码

question 问号

question-circle 圆形问号

quote-left 左引号

quote-right 右引号

radio 收音机

random 随机

raspberry-pi 树莓派

react React

readme README

receipt 收据

record-vinyl 黑胶唱片

recycle 回收

red-river 红河

registered 注册

remove 移除

repeat 重复

reply 回复

reply-all 全部回复

repository 仓库

repository-alt 仓库(简化)

request 请求

resize 调整大小

retweet 转发

road 道路

road-barrier 路障

robot 机器人

rocket 火箭

rotate 旋转

rotate-left 向左旋转

rotate-right 向右旋转

rss RSS

rss-square RSS(方形)

rub 卢布

References

Lane, S. M. (1998), Categories for the working mathematician, Graduate texts in mathematics, New York, NY: Springer-Verlag. https://doi.org/10.1007/978-1-4757-4721-8.
Top